Education & Outreach > Short Courses > Short Course Catalog > Materials Processing > Photovoltaics: The Engineering, Technology and Application of Solar Cells (1 day)

Photovoltaics: The Engineering, Technology and Application of Solar Cells (1 day)


Course:
Photovoltaics: The Engineering, Technology and Application of Solar Cells (1 day)

Course Objectives

  • Understand the basic operation of photovoltaics (solar cells)
  • Gain an understanding of the state of the art and current primary research focuses in all common and emerging photovoltaic technologies
  • Learn how solar cell operation is modeled to diagnose and optimize devices
  • Understand how photovoltaics fit in to future energy generation schemes

Course Description

This course introduces the broad aspects of photoelectric solar cells, properly known as photovoltaics (or PV for short). The basic issues related to energy and how PV fits into the potential generating technologies are reviewed briefly and examples of actual installations are given. A description of how PV power systems are designed is included. A general introduction to the electrical and optical theory of the devices is provided including analysis of ideal and non-ideal device performance, reflection, transmission, carrier generation, and other aspects of the optical properties. Consideration will include issues related to transparent contacts, antireflection coatings, and tunnel junctions for connection in multilayer devices. Students will be introduced to the AMPS and SCAPS modeling tools and useful spreadsheet-based approaches to modeling the devices. A brief overview of the physics of semiconductor defects will be presented and how defects affect solar cell performance will be included.

Different PV technologies are reviewed including concentrating and non-concentrating systems, single and multijunction devices, thin film and bulk devices, thermophotovoltaics, and novel concepts such as photoelectrochemical cells, organic PV, and quantum dot structures. Inorganic polycrystalline thin film technologies considered will include amorphous Si, CdTe, and CuInSe2 and related compounds. Multijunction high-efficiency concentrator design will also be discussed. The current status of each of these technologies and some of the issues and potential limitations to them are discussed. Persons planning to develop a research program in PV and wishing to familiarize themselves with the field should find this section of the course a useful basis upon which to plan their program.

If time permits on the first day a case study of expected daily power production in the central U.S. (central Illinois specifically) will be presented. This illustrates the variations with time of day and sun/clouds. The example includes a discussion of how to project the levellized cost of ownership of the system per kWh of power produced. Some discussion of subsidies and other issues related to the evaluation of system cost will be given.

Other topics can be covered if the audience prefers to give those priority (more details on manufacturing issues, characterization of materials and devices, etc.)

Course Materials

Course Notes

Course Cost: $790

Who should attend?

Students, scientists and engineers with little or no experience in photovoltaics. Those with a history of work in the field will also profit from the descriptions of device modeling and the range of approaches used. They will also get a sense of the current state of the art across all technologies. The course is not currently designed to educate system installers because that is a topic for an electrician and is relatively generic. System installers may gain some useful background concerning the devices they are installing. Questions concerning practical installation of systems can be answered but students should not expect to come away prepared to install their own system.

Instructors

Angus Rockett
Head for Department of Metallurgical and Materials Engineering, Colorado School of Mines